Frrata and comments to textbook

G. C. Buttazzo, “Hard Real-Time Computing Systems:

Predictable Scheduling Algorithms and Applications”
Second Edition
Springer, 2005 (first reprint 2010).

Marco Cesati — Tue, 08 Mar 2011 15:10:58 40100

)

The marker “|BEC|” indicates that the entry is taken from Buttazzo’s Errata
Corrige, available at http://retis.sssup.it/ “giorgio/errata-HRT2.pdf

e Page 13, first two paragraphs

Cycle stealing is a very old DMA mechanism dating back to the ISA
bus. In modern computer architectures much more efficient tech-
niques like bus mastering are employed. It is still true, however, that
transactions on the bus can suffer from impredictable delays caused
by concurrent transactions issued by other devices.

e Page 13, last paragraph

“Today, however, since memory has an access time almost comparable
to that of cache, the main motivation for having a cache is not only
to speed up process execution but also to reduce conflicts to other
devices.”

I think that this sentence is conceptually wrong, because it suggests
that access times of static RAM (caches) and dynamic RAM (mem-
ory) are similar or comparable. While it is true that dynamic RAM
has become faster, CPU speed (and correspondingly static RAM
speed) increased much more, thus the so-called memory wall effect
is nowadays worse than before. Experiments performed on modern
computer architectures show that the caches improve the running time
of a generic application of a factor between 40 and 100. (To get an
idea, consider that an almost istantaneous 1-second program might
require without caches more than one minute to complete!)

Furthermore, the idea that caches reduce conflicts between hardware
devices is opinable. I would say that it is rather true the opposite:
several devices that want to access the memory subsystem at once may
induce consistency and coherency problems that must be addressed
with specific arbitration protocols at the cache level.

Page 14, first paragraph

“Furthermore, when performing write operations into memory, the
use of the cache is even more expensive in terms of access time, be-
cause any modification made on the cache must be copied to the
memory in order to maintain data consistency.”

This sentence is misleading. Normally, write operations from cache
to memory are not directly associated with program instructions that
“write in memory”. In fact, the usual consequence of a “write” in-
struction is to change a value inside a cache line: there is no immediate
need to update the memory before executing the next instruction of
the program.

Actually, write operations in dynamic memory occur whenever a “dirty”
cache line must be evicted in order to make place for some other data.
This can happen when executing both “read” and “write” program
instructions.

Page 22, line 12 from bottom

The definition of step function given in the text is correct. Perhaps an
easier definition is: “a function whose domain can be decomposed in
semi-closed intervals in which the function assumes a constant integer
value between 0 and n”. That is, o : RT — {0,1,...n} and

Vtg € R, Jty,t2 € RY st ty <tg <ty and o([ty,t2)) = {o(to)} -

Page 22, line 6 from bottom

“Fach interval [t;,t;11)” should be “Each maximal interval [t;,¢;,1)”
(that is, each interval characterized by the particular constant value
that o(t) assumes in each of its points).

Page 23, Figure 2.2

The figure should not have wvertical lines, and the value o(t) of the
schedule function in a context switch time ¢ is equal to o(t +¢). A
similar problem occurs in Figures 2.3, 2.15(d), 4.14, 4.17, 5.3, 5.4, 5.5,
5.6,5.7, 5.11, 5.12, 5.13, 5.17, 5.18, 5.19, 5.21, 5.22. 6.1, 6.2, 6.3, 6.4,
6.14, 7.6, 7.7, 7.8, 7.12, 7.19. 8.5, 8.6, and 8.10.

Page 25, line 8 from bottom

“an aperiodic job by” should be “an aperiodic task by”.

Page 25, lines 5 and 4 from bottom

“a periodic task can be completely characterized by its computation
time C; and its relative deadline D,”: of course, it is characterized
also by its period T;, when T; # D;.

Page 28, 5 from bottom

“a resource is any software structure”: it could conceivably be a hard-
ware mechanism too, such as a range of memory cells or a shared
printer.

Page 29, lines 5 and 6 from top

“A piece of code executed under mutual exclusion constraints is called
a critical section.” Observe that it is possible to use the same locking
mechanism (e.g., a specific semaphore) to protect two different code
regions. Each of them is a critical section by itself, and furthermore
the two sections are mutually exclusive with respect to each other.

Page 31, Figure 2.11 and corresponding comments in text

It should be observed that an OS might have mechanisms to reduce
the overhead of synchronization primitives, which may violate the
simple transitions rules shown in the figure. For example, the OS
might keep track of the highest-priority task blocked on a semaphore
and perform a direct transition from the WAITING state to the RUN
state of that process as soon as the semaphore is freed.

Page 33, lines 3 from top

Scheduling decisions can also be taken when a sleeping task awakes,
that is, when a task becomes ready to execute again because the
resource needed to continue its execution becomes available.

Page 34, Figure 2.12

The arrow labeled “preemption” points to the wrong state. It should
go from “RUN” to “READY”.
Page 35, Figure 2.13

“t ¢” should be “ty”.

Page 41, line 3 from bottom

“between task J; and tasks J; and Jg” should be “between task J,
and tasks J; and Jg”.

Page 43, first paragraph under “ANOMALIES UNDER...”

The (relative) priorities of the tasks are lacking. Similar to the exam-
ple started at page 39, tasks are assumed to be sorted by decreasing
priorities.

Page 47, line 8 from top

“d, < dp” should be “d, < d}”".

Page 63, line 1 from top

The partition of the tasks in I' respects the ordering of the task in-
duced by their start times.

Page 73, lines 15 and 16 from top

A better description for “response time” is: time interval between the
release time and the finish time of the instance.

Page 73, lines 11 and 10 from bottom

“the interval between the critical instant and the response time of the
corresponding request of the task” should be “the interval between
the critical instant and the finish time of the corresponding instance
of the task”.

Page 73, line 9 from bottom

“Relative Release Jitter” should be “Relative Start Time Jitter”.

Page 73, line 6 from bottom

“Absolute Release Jitter” should be “Absolute Start Time Jitter”.

Pages 98-100

The example on pages 98-100 contains a number of errors.

e The iteration steps to determine R4 on page 100 do not conform
to the description of the calculation of R; on page 98. This prob-
lem finds its cause in a partial update from the first toward the
second edition, where the calculation has been updated, but the
iterative steps to determine R4 has remained unaltered. Please
note that the final result found for R, is correct.

e The value for 1,(3) is 8 (rather than 7, as given in the book).

e In Figure 4.14, the term f¥ is not defined and is meant to be equal
to I4(k) + Cy. The figure is meant to show I as a function of
t,ie., I4(t) = 3°,-; [t/T;]. Since this is a function, vertical lines
should not be there. Finally, for ¢ = 0, it should be I4(0) = 0
and I,(t) =4 for t € (0, 4].

Page 115, Section 5.3.1

It is worth observing that the schedulability analysis of fixed priority
servers, although carried out with the Liu and Layland method, can
also be performed using the Hyperbolic Bound approach [1] or the
Response Time Analysis [2]. See the related papers for more details.

[1] E. Bini, G. Buttazzo, and G. Buttazzo, “Rate Monotonic Analysis: The
Hyperbolic Bound”, IEEE Transactions on Computers, Vol. 52, No. 7, pp.
933-942, July 2003.

[2] G. Bernat and A. Burns, “New results on fixed priority aperiodic
servers”, Proceedings of the 20th Real-Time Systems Symposium, pp. 68—
78, December 1999.

Page 116, line 8 from bottom

When computing the response time of an aperiodic job under the
Polling Server, there is a problem for situations where C, = kC,
where k € N*. In that case, F, = k and R, = 0. The formula for F,
should therefore be: F, = [C,/Cs] — 1. For the special case where
C, = kCs, R, will then become equal to Cj, leading to the right
result.

Page 376, Exercise 3.4

Solution to Exercise 3.4 contains two errors:

e Based on the heuristic function H = a + C + D, the schedule
found is {Jg, J4, (]37 Jl}

e As illustrated in Figure 12.2; there is only one feasible schedule,
i.e., {J3,Jo, Jy, J1}. This schedule can be found by using the
heuristic function H = a + d, and not H = a + D.

Page 388, Exercise 6.6
Lcdg2) _ fl(l) — 4” should be “dg2) _ fl(l) —_ 5
“dgg) _ f1(2) — 3” should be “dg3) _ f1(2) — 7

Page 391, Exercise 7.5

Solution to Exercise 7.5 contains an error: D3 cannot potentially
block 71, because 7, does not use resource D. This does not change
the numerical result of the exercise.

