
Linux Kernel Hacking Free Course, 4th edition

Distributions for Linux

Vincenzo Laurenziello

University of Rome - Tor Vergata

April 9, 2008

Outline of the Talk

I What is a distribution
I Distributions considered:

I Fedora
I Slackware
I Ubuntu

I Filesystems commonly used in a cdrom

I Common problems and how to solve them

What is a Distribution (1/2)

A distribution includes:
I a kernel which:

I can boot from any block device, i.e., Hard disk, cdrom,
pen drive, etc. . .

I recognizes the I/O devices included in the computer
I supports several filesystems, i.e., ext2/3, ISO9660, procfs,

sysfs, etc. . .

I a set of packages that contain:
I applications
I libraries
I configuration files

What is a Distribution (2/2)

There are over 500 Linux distributions. They can be classified
according to:

I User Tipology
I Newbie Users: never used a *nix OS
I Normal Users: use graphical configuration tools, they prefer

user friendliness
I Experienced Users: use advanced tools and configure manually

everything, they know Linux quite well

I Workload Tipology
I Desktop Distributions: general-purpose, easy to use, handles

multimedia applications
I Live Distributions: doesn’t use the hard disk, can be used for

data recovery or demo
I Enterprise Distributions: specialized for managing critical

applications
I Real-Time Distributions: specialized for real-time applications
I Embedded Distributions: tailored for specific hardware with

limited resources

Differences Among Distributions (1/2)

I User-Friendliness:
I Fedora uses Anaconda, it can work in graphical mode or in

text mode
I Slackware uses only a textual interface called dialog. It’s

simple and powerful
I Ubuntu runs like an LiveCD, thus we can run other tasks, i.e.,

surfing Internet, during the installation

I Booting:
I Fedora uses a SystemV style. Every runlevel is stored in the

directory /etc/rc.d/rc.X
I Slackware uses the BSD style. Every runlevel is described in a

file called /etc/rc.d/rc.X , but it supports also SystemV init
files

I Ubuntu uses a SystemV style. Every runlevel is stored in the
directory /etc/rcX .d

Differences Among Distributions (2/2)

I Package Types:
I Fedora packages are cpio archives with modified headers

Package managers: rpm or yum
I Slackware packages are gzipped tar archives

Package managers: installpkg, removepkg, upgradepkg,
and pkgtool

I Ubuntu packages are ar archives
Package managers: dpkg, apt-get, Synaptic

I Personalization:
I on Fedora we can use rpm-build to create a personal package
I on Slackware we can use makepkg to create a personal package
I on Ubuntu we can use dh-make, debuild to create a personal

package

Common Elements

All distributions considered:

1. boot from cdrom or dvdrom using a bootloader like:
isolinux or GRUB

2. mount a miniroot provisional filesystem derived from initrd

or initramfs

3. mount the procfs and sysfs filesystems

initrd

I it is the initial ramdisk

I it is a gzipped file that contains a filesystem

I it is used during kernel start up (the pathname of initrd is
passed as a bootloader parameter)

I it is mounted on a ram-disk, aka a ram based block device

I the kernel executes the /linuxrc file stored in it

$ dd if=/dev/zero of=my initrd.img bs=1024 count=1000

$ mkfs.ext2 -F my initrd.img

$ mkdir initd dir; mount -oloop my initrd.img initrd dir

$ cp -ar /data/* initrd dir/

$ umount initrd dir; rmdir initrd dir

$ gzip my initrd.img

initramfs

I it is the successor of initrd

I it is a gzipped file that contains a cpio archive

I as in initrd, it is used during kernel start up (the pathname
of initrd is passed as a bootloader parameter)

I it uses ramfs

I the kernel executes the /init file stored in it

$ cd /data

$ find . | cpio -o -H newc > ∼/my initramfs.img

$ cd ∼; gzip my initramfs.img

initrd vs initramfs

initrd initramfs

Uses a block device with Uses the necessary space
fixed amount of memory
Uses a specific filesystem Uses the built-in filesystem ramfs

with cache memory
Calls pivot root Calls switch root

Steps required to build one of them
Creates a file Get a list of files
Formats it Stores data
Mount it
Stores data
Umount it

Current distributions use initramfs.

procfs

procfs is a pseudo-filesystem that:

I displays information about running processes:
$ readlink /proc/self/exe

/bin/readlink

$

I reads, and eventually edits, some kernel parameters:
$ cat /proc/sys/kernel/ctrl-alt-del

0

$ echo 1 > /proc/sys/kernel/ctrl-alt-del

$ cat /proc/sys/kernel/ctrl-alt-del

1

$

sysfs

sysfs is another important pseudo-filesystem.
It reacts to plug-ins and plug-outs by adding and removing files in
/sys
The most important subdirectories are:

I /sys/devices: it contains all devices recognized by the kernel.
They are ordered by tipology of device;

I /sys/bus, /sys/block, /sys/class: these directories contain
symlinks to the objects present in /sys/devices:

I /sys/bus: ordered by tipology of bus used from a device;
I /sys/block: it shows only the block devices;
I /sys/class: it organize the informations into many

hierarchical classes of devices.

I /sys/modules: contains all modules (statically or dinamically
linked) that use sysfs APIs

sysfs Example

Using udevmonitor we can check what sysfs is doing
udevmonitor &

If we insert a module, for example
modprobe usb-storage

sysfs reacts and populates /sys with new files and directory, for
example

/module/usb storage/drivers

/bus/usb/drivers/usb-storage

/block/sdb

/class/usb device/usbdev1.5

ramfs, tmpfs

I ramfs is a filesystem that store files in ram. Only root can
write on this filesystem.

I tmpfs is an extension of ramfs. Contrary to ramfs, the pages
of tmpfs can be swapped out if necessary. Users can create
their own tmpfs.

Slackware

I Language: bash script

I Three kernels to use:
I huge.s: ide+scsi
I hugesmp.s: ide+scsi with smp support
I speakup.s: ide+scsi with speech synthesizers

I /dev is populated by /dev/makedevs.sh

I it calls a shell. To install this distribution the user must issue
the setup command

Detecting Hardware on Slackware

I /dev/makedevs.sh: parses /proc/partitions and populates
/dev using mknod

I /sbin/rescan-scsi-bus: loads sg module, removes and adds
all devices found in /sys/class/scsi host/ or in
/proc/scsi/scsi file

I /dev/devmap mknod.sh: creates /dev/mapper/control for lvm
devices

Fedora

I Language: C & python

I It loads modules using the init module syscall

I kudzu is used to probe devices (in Fedora 9 kudzu will be
removed)

I It populates /dev using the mknod syscall

I Starts user interface directly and spawn shells.

Detecting Hardware on Fedora (1/2)

I loads essentials modules about filesystems, ide, scsi, usb,
firewire, and raid

I calls probeDevices implemented in kudzu library that parses
/proc/ide for ide devices and /sys/bus/scsi/devices for
usb, scsi or sata devices

I calls devMakeInode to create new node devices using mknod

syscall

Detecting Hardware on Fedora (2/2)

Example to find an installation cdrom

squashfs

I is a read-only filesystem that compresses both files, inodes
and directories;

I designed for archivial use (LiveCD/DVD) and for embedded
systems (Flash Memory);

I we can sort files into the archive according to a fixed priority.

I isn’t in the mainline kernel.

$ mkdir -p test/a directory

$ touch test/a file

$ ln -s ../a file test/a directory/a link

$ mksquashfs test/ test.fs >/dev/null

$ unsquashfs -l test.fs

squashfs-root

squashfs-root/a directory

squashfs-root/a directory/a link

squashfs-root/a file

$

Ubuntu

I Language: bash script

I udev recognizes the hardware

I it starts a graphic interface which allows the user either to
play with a LiveCD or to install the software on a hard disk

Detecting Hardware on Ubuntu

I loading modules listed in /conf/modules

I launches udevd, udevtrigger

I udev uses his rules to load modules about ide, scsi, mmc and
populate /dev

Build your own distribution (1/2)

Main components:

I a script bash that builds an installation cdrom

I a configuration file which specifies the list of packages

I these packages can be fetched from a Slackware repository
(official or not) or from your hard disk (personalized package)

http://vinx.tuxfamily.org/my_distro

http://vinx.tuxfamily.org/my_distro

Build your own distribution (2/2)

Main characteristics:

I every tool is built statically

I the tools used are: busybox, e2fstools, util-linux, a Linux
kernel and a bootloader (isolinux or GRUB)

I hard disks are detected using the following table

Device Path

USB /sys/bus/usb/drivers/nmodule / \
symlink /host[0-9]/scsi host:host[0-9]/ \
proc name

IDE /sys/bus/ide/drivers/nmodule / \
symlink /media

SCSI

SATA /sys/class/scsi host/host[0-9]/proc name

Common Problems: Module Not Found

I We must select the dd bootloader option offered by Fedora

1. loads a driver disk
2. this driver disk contains an image called drivers.img
3. we can build a new drivers.img using the dd tool

I Slackware offers a shell to load manually a particular module
I Using Ubuntu, we can:

I add the additional break bootloader option to load manually a
particular module, or

I using a shell in graphical interface to do the same things

Common Problems: Kernel Hangup

In some unlucky cases, the distribution kernel may hangup before
offering a shell
We must rebuild a kernel to take care of the problem and create a
new iso image

I Fedora has many variants of official iso images called spins,
we must create a new spin using a tool such as pungi and add
a different kernel

I The Slackware cd offers a tutorial file called README.TXT in
isolinux directory that describes the steps to build a new iso
image

I Ubuntu has many tools, like Ubuntu Customization Kit, to
create customized iso images

Questions?!?

