
Linux on the Cell processor
Linux Kernel Hacking Free Course — IV edition

Paolo Palana

System Programming Research Group — University of Rome Tor Vergata
palana@sprg.uniroma2.it

April 23, 2008

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 1 / 1



Introduction

What is Cell?

Cell is a multiprocessor system on single chip
developed by IBM in collaboration with Sony and

Toshiba

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 2 / 1



Introduction

What’s New in Cell?

Many other multiprocessor architectures today:

Intel Core duo

Intel Xeon

AMD Athlon 64 X2

AMD Opteron

All homogeneous architectures

Cell has a non homogeneous architecture

One general purpose processor (PPE )

Eight special purpose processors (SPE )

To fully exploit the Cell architecture a new
programming approach is required

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 3 / 1



Architectural Overview

Architectural Overview

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 4 / 1



Architectural Overview Power Processor Element

Power Processor Element (PPE ) architectural overview

The Power Processor Element:

The main processor: it executes both the operating

system and the general purpose applications, and it
spawns tasks to SPE

A dual-threaded general purpose processor

Based on a 64 bit RISC architecture conforming to the
PowerPC Architecture version 2.02

Has vector/SIMD multimedia extensions

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 5 / 1



Architectural Overview Power Processor Element

PPE simple block diagram

Image taken from CBE Programming Tutorial v. 3

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 6 / 1



Architectural Overview Synergistic Processor Element

Synergistic Processor Element (SPE )

Each SPE is:

Slave processor: it execute tasks spawned from the

PPE

Based on a 128 bit RISC architecture specialized for
computing intensive SIMD applications

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 7 / 1



Architectural Overview Synergistic Processor Element

SPE simple block diagram

Image taken from CBE Programming Tutorial v. 3

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 8 / 1



Architectural Overview Synergistic Processor Element

Synergistic Processor Unit (SPU)

Deals with instructions execution and control

Single (unified) register file with 128 registers

Unified 256 KB local memory for instructions and

data named Local Store (LS)

New SIMD (Single Instruction Multiple Data)
instruction set

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 9 / 1



Architectural Overview Synergistic Processor Element

Local Store (LS)

Each SPE is an indipendent processor with its own
program counter

The SPU fetches instructions and load/store data
from/to its own Local Store

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 10 / 1



Architectural Overview Synergistic Processor Element

Memory Flow Controller (MFC )

It’s the interface between the SPE and the other
system processors

Contains a DMA controller for DMA transfers support

In order to support the DMA controller, the MFC
maintains a queue of DMA commands

After a DMA command has been queued, the SPU

can continue to execute instructions while the MFC
processes the DMA command

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 11 / 1



Architectural Overview Synergistic Processor Element

DMA tranfers

Each DMA transfer can move up to 16 KB.

The SPU associated with MFC can issue a DMA-list
of up to 2048 DMA

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 12 / 1



High level programming

High level programming

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 13 / 1



High level programming High level programming — an introduction

High level programming — an introduction

SPE and PPE are independent processors

To fully exploit the Cell performance you must write
two different software programs:

PPE program — a program running on PowerPC core
that offloads task to SPE

SPE program — a program running on SPE processor
that uses the SPU Instruction Set

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 14 / 1



High level programming Creating a SPE thread from PPE

Creating a SPE thread from PPE

A PPE program spawns a task to an SPE by creating
a thread on the SPE. It uses the following functions:

spe context create() – creates a context for the SPE
thread

spe program load() – load an SPE program into the

context

spe context run() – execute a context on a physical

SPE

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 15 / 1



High level programming Creating a SPE thread from PPE

Creating a SPE thread from PPE and libspe2

The function aboves are in libspe2, which is an

implementation of the SPE Runtime Management
Library developed by IBM under GPL license and
downlodable from

http://sourceforge.net/projects/libspe

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 16 / 1



High level programming SPE Program

SPE Program

Conceived and compiled for execution on the SPE

This program can use SPE (vectorial) data types and
SIMD instructions

SIMD instructions are defined in the SPU C/C++
language extensions and are named intrinsics

A SPE program transfers data from/to main memory
to/from Local Store through DMA transfers

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 17 / 1



High level programming Tips for performace improvements (SPE side)

Tips for performance improvements (SPE side)

Use vector data type instead of scalars

Perform loop unrolling

Use double buffering

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 18 / 1



High level programming Scalar and vector data types

Scalar and vector data types

The SPE processor has a vectorial architecture. The
SPU loads and stores one quadword at time

Scalar types are stored in the left-most word in the

register (Preferred Slot)

We must avoid as much as possible scalar types

because operations on scalar types are inefficient

For example a scalar load must be rotated into the
preferred slot

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 19 / 1



High level programming Loop unrolling

Loop unrolling

Loop unrolling is a common technique for increasing
the performances

SPE processors have 128 registers

Using loop unrolling can improve register utilization

PROBLEM

Loop unrolling increases the size of code

Data and code must fit in 256 KB Local Store

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 20 / 1



High level programming Double buffering

Double buffering (1/2)

The SPU moves data from/to main memory only with
DMA tranfers

The communication bus between SPE’s and PPE is a
bottleneck

In the Cell architecture DMA transfers are
asynchronous

This feature allow the programmer to schedule the

transfers so that the latency of memory accesses can
be hidden by overlapping the transfers in one buffer

with computations in another

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 21 / 1



High level programming Double buffering

Double buffering (2/2)

Image taken from CBE Programming Tutorial v. 3

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 22 / 1



Cell and the Linux Kernel

Cell and the Linux Kernel

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 23 / 1



Cell and the Linux Kernel Introduction

Linux Kernel support for Cell

The Cell processor is fully supported by the Linux

Kernel
Cell is a PowerPC-based architecture

If you look in
/<path linux source>/arch/powerpc/platforms you

can find two folders (among many others) named:
cell
ps3

The first folder include code for supporting the native
Cell

The second folder include code for supporting the Cell
on Sony PlayStation 3

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 24 / 1



Cell and the Linux Kernel Introduction

Differences between native Cell and Cell on ps3

In native Cell the Linux kernel runs directly on
hardware

In ps3 the Linux kernel runs in a virtualized
environment

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 25 / 1



Cell and the Linux Kernel Introduction

Why different platforms?

Why there are different platforms for Cell native and

Cell on ps3?

The presence of a virtualization layer imposes different
low level interactions between hardware devices and

kernel

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 26 / 1



Cell and the Linux Kernel Introduction

Kernel execution overview on native Cell

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 27 / 1



Cell and the Linux Kernel Introduction

Kernel execution overview on PlayStation3

Image taken from http://www.kernel.org/pub/linux/kernel/people/geoff/cell/

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 28 / 1



Cell and the Linux Kernel Kernel user interface

How libspe2 create a SPE context – spu create() syscall

The spu create context() of libspe2 creates an SPE

context

An SPE context is, essentially, a directory in spufs
pseudo file system (see later)

The spu create context() function creates an entry in
spufs through the spu create() system call and maps

some file created by spu create(). For example the
mem file (see later)

The spu create() system call creates a spu context in

kernel memory and return an open file descriptor for
the directory (in /spu) associated with it.

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 29 / 1



Cell and the Linux Kernel Kernel user interface

SPU File System (spufs)

Similar to procfs and sysfs

Purely virtual file system

By convention mounted in /spu

Directories in /spu represent SPE contexts whose

properties are shown as regular files

Interaction with these contexts can happen through

file operations like open, read, write, etc.

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 30 / 1



Cell and the Linux Kernel Kernel user interface

Examples of files in a spufs sub-directory

mem – The local memory of a SPE context. Mainly
used to load the executable file of the program to be

run onto the SPE

regs – The general purpose registers of an SPE.

Normally can’t be accessed directly but they can be
saved in a context in kernel memory

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 31 / 1



Cell and the Linux Kernel Kernel user interface

SPE context

It is a data structure which represents a SPE task

A context has all properties of a physical SPE

The kernel can use this structure to save the state of
a SPE thread

Context switching on SPE is very inefficient

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 32 / 1



Cell and the Linux Kernel Kernel user interface

How libspe2 load a program in to SPE

The spe program load() function of libspe2 loads an

SPE ELF object file in an SPE

This function does not call any syscall

Instead, it makes use of a file memory mapping of the

mem file

Thus, the SPE ELF object file is loaded into the

context directly from user space

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 33 / 1



Cell and the Linux Kernel Kernel user interface

Running a SPE program – spu run() syscall

The spe context run() function runs a SPE program

previously loaded into a SPE context

It calls the spu run() system call

spu run() starts the SPE thread execution. The PPE
thread that called spu run() blocks in that system call

Each SPE thread is associated with one PPE thread

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 34 / 1



Conclusions

Example of Cell application

Cell is increasingly used in accademic and scientific
world

With ps3 Cell is incredibly low cost

The University of Massachusetts Dartmouth uses a
cluster of sixteen ps3 for astrophysics analysis

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 35 / 1



Conclusions

Performance scaling with implementation

2048x2048 float matrix multiplication on single SPE

Implementation Execution time (ms)
Scalar 338687.230514
Vectorial 336059.746404 (-0,77%)
Vectorial - Unrolling 280815.662356 (-17%)
Vectorial - Unrolling
con spu madd

262594.693659 (-23%)

Vectorial - spu madd 75076.210915 (-78%)
Vectorial - spu madd -
spu gcc -O3

18072.911028 (-95%)

Vectorial - spu madd -
with Double Buffering

10509.868133 (-97%)

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 36 / 1



Conclusions

Conclusions

Cell is a very interesting and (potentially) powerful
architecture

Each SPE is capable of 25.6 GFLOPS in integer and
single precision arithmetic

Fully exploiting Cell capabilities is not easy

Paolo Palana (SPRG) Linux on the Cell processor April 23, 2008 37 / 1


