Hard Real-Time Linux
(or: How to Get RT Performances Using Linux)

Andrea Bastoni

University of Rome “Tor Vergata”
System Programming Research Group
bastoni@sprg.uniroma2.it

Linux Kernel Hacking Free Course IV Edition

r

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 1/41

Introduction

A general (informal and incomplete) definition:

@ A real-time system should complete its work accordingly to
precise temporal constraints

Is it enough?

What about the consequences of a malfunctioning?

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Introduction Real-Time

@ Hard Real-Time
@ Soft Real-Time

Some possible criteria to draw their definitions:

@ Criticality of consequences of a failure
(on both system and environment)

» What is a generally acceptable definition of critical failure?
@ Usefulness of late work completion (job tardiness)
» How to evaluate the usefulness of a late completion?
© Probabilistic considerations
» No accounting of possible consequences Y

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 3/41

Introduction Real-Time

An operational definition:
@ Hard Real-Time: a certification (formal proof, etc.) is
needed to show that deadlines will always be met.
@ Soft Real-Time: such a certification is not needed: good
statistical averages or testing evidences will generally
suffice.

These definitions do not fully cover the complexity of the field
though.

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 4/41

Introduction Real-Time

Some questions:

@ What are deadlines and who provides them?
And on which bases?

» Generally settled starting from job criticality, output
usefulness etc.

» Risk assessment and deadline-based “countermeasures”
defined in Specification Documents

@ Is it so easy to prove (100%) a system to behave correctly?
» Various methodologies: WCET Analysis, formal proofs,
exhaustive testing (not always applicable)

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

30/04/2008 5/41

Introduction

Distinctive features:

Real-Time side Embedded side
@ Predictability @ Power awareness
@ Reliability @ Compactness
@ Performances (not @ Scalability
always)

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Introduction Real-Time

A Real-Time Operating System (RTOS) should be able to offer
the right execution environment to well suited RT Applications.
This means:
@ Predictable and efficient scheduling
» Fixed Priority Scheduling (e.g. Rate Monotonic)
» Dynamic Priority Scheduling (e.g. Earliest Deadline First)
@ Predictable interrupt handling and low-latency IRQ
dispatching
@ Task communication and synchronization support
@ Resource allocation policies
(Prio Inheritance, Prio Ceiling ...)
r

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 7/41

Linux as Real-Time Operating System

Is Linux a Real-Time Operating System?

Sometimes. ...

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Linux as Real-Time Operating System

Linux is a Soft Real-Time Operating System:

It is optimized to provide:
@ Good average response time
@ High throughput

Suitable for:
@ Multimedia Applications
e VoIP
@ Video / Audio Streaming
1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Linux as Real-Time Operating System

Main native features to support Real-Time:

@ Two real-time scheduling policies

» FIFO (SCHED_FIFO)
» Round-Robin (SCHED_RR)

@ Fast IRQ management (“two stage” handling)

@ High responsiveness (high resolution timers,
1000Hz tick . . .)

@ Preemptive kernel

...and what about predictability?

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Linux as Real-Time Operating System Overview

Linux has “some” problems with predictability:

@ Several paths in the kernel cannot be preempted
© Interrupts are disabled in critical sections of many handlers

© Non-predictable Interrupt Service Routines (ISR)
management. fast ack to devices, but most “bottom-half”
handler’s durations are not predictable (e.g. Disk 1/O)

© IRQ management doesn’t consider priorities

Furthermore:

@ Quite high (w.r.t. HRT performances) scheduling latency for
user mode processes

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 11/41

Linux as Real-Time Operating System Overview

How to overcome these problems:

@ Mono Kernel Approach

» Changes are done directly into the kernel source
» Porting should be done through kernel versions
» Mostly commercial: TimeSys Linux, MontaVista Linux . ..

@ Dual Kernel Approach

» Changes are done locally: simplified porting
» New (and complex) intermediate layer between Hardware

and OS

» Mostly Open Source: RTAI, RTLinuxFree - PaRTiKle,
Xenomai

» But some commercial as well: Wind River Real-Time Core
Linux 1y

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 12/41

Linux as Real-Time Operating System Dual Kernel architecture

ldeas:
Mono RT Kernel

@ Insert an Hardware
Abstraction Layer
between HW and [Hardware
OSes

@ Run Linux as a
“normal” low priority Linux | RT Kernel
process on top of
a real-time scheduler [Hw Abstraction Layer]

[Hardware]

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 13/41

Linux as Real-Time Operating System

Dual Kernel approach allows:

@ Very Low latency IRQ response

@ Predictable IRQ handling (response time can be bound
from above)

@ Reliable scheduling policy (FIFO, RR, RM, EDF)
@ Fast task switching

@ Resource allocation policies explicitly take into account
tasks priority

@ Ad-hoc synchronization mechanisms

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Linux as Real-Time Operating System Dual Kernel Disadvantages

But:

@ When calling standard library functions we may loose
“real-time characteristics”

@ So we must stay in kernel mode: calls to non real-time
library functions are not allowed

@ Drivers have to be suitable for “hard real-time”

@ To exploit OS real-time performances we may have to use
“non compliant” API (sometimes proprietary)

@ Generally limited interprocess communication with Linux
standard applications

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 15/41

Linux as Real-Time Operating System

@ Positive aspects generally counterbalance negative ones
» We can afford the extra programming effort and limitations

@ In some cases though, dual kernel disadvantages are
unacceptable
» It would be great to (1) have a way to “do real-time” using the
standard kernel and (2) to be able to obtain good
performances staying in User Mode

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Linux as Real-Time Operating System Linux Kernel's Support to Real-Time

Some questions:

@ What kernel’s features can be exploited to get Hard
Real-Time performances?

@ How to cope with load balancing on SMP architectures
@ Is there a way to increase kernel preemptability level?

...and some answers:

@ Real-Time Scheduling Policies and Scheduling Classes
@ CPU affinity (IRQs affinity, tasks affinity)
@ Cpusets and sched_domain

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 17 /41

Linux as Real-Time Operating System Scheduling

New (> 2.6.23) scheduling approach:

@ Mainly due to Ingo Molnar, working on Con Kolivas’
“fair-scheduling” approach

@ Introduction of Completely Fair Scheduling (for conventional
processes), which models “an ideal, precise multi-tasking
CPU”

@ Introduction of Scheduling Classes:

» Hierarchy of scheduler modules that incapsulate the details
of their scheduling policy

» Clean interface between the scheduler core and scheduler
modules

» Clear scheduler modules separation: one file per class
(sched_rt.c, sched_fair.c, sched_idletask.c) Fa

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 18/41

Linux as Real-Time Operating System Scheduling

@ The scheduler core can handle different classes (and
different policies) without assuming too much about them

@ |t simply begins to walk the hierarchy from top and
delegates tasks selection and management to classes

@ It is easier to modify policies or introduce new ones
@ sched_rt.c: SCHED_FIFO and SCHED_RR policies:

» Highest prio module in the hierarchy
» RT tasks management completely distinct from conventional

processes one
» Single runqueue with 100 priority levels
» O(1) task selection bitmap-based

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 19/41

Linux as Real-Time Operating System Scheduling

Renewed SMP load-balancing
@ Scheduler core relies on classes policies to choose which
processes to move

@ Selection of processes to move is done through iterators
(provided by each class)

@ Scheduler core is unaware of strategies chosen by classes
to balance tasks

@ Different classes may implement different strategies

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 20/ 41

Linux as Real-Time Operating System

The idea:

@ Use affinity mechanisms provided in the kernel to bind a
real-time task and its relative interrupts on a CPU

@ Prevent other tasks and IRQs to be executed on that CPU

This path has been already followed in
ASymmetric MultiProcessor-Linux which allows to obtain:

@ Deterministic execution time
@ Low system overhead
© High performances and responsiveness

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Linux as Real-Time Operating System Affinity and Cpuset

How to assign IRQs and tasks to CPUs:

@ Binding interrupts on a CPU(s) can be easily done by using
the procfs

@ sched_setaffinity syscall can be used to bind a task
toa CPU

Cpusets offer more flexibility:

@ Cpuset provides a mechanism to associate a set of CPUs
(and of Memory Nodes) with a set of tasks

@ All task’s children are automatically executed in the same
set of their parent

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 22/41

Linux as Real-Time Operating System Affinity and Cpuset

@ A cpuset defines a scheduling domain which covers all the
CPUs included in the cpuset

@ Load Balancing is done only inside a sched_domain

@ Cpusets allow to easily control tasks distribution (and
isolation) on system CPUs

@ Cpusets can be effectively used to define a partitioning of
system CPUs. This is often the first step of several
multiprocessor real-time scheduling policies

@ If used together with IRQ affinity we can enforce real-time
tasks isolation w.r.t. other non-real-time tasks in the system

0

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 23 /41

Linux as Real-Time Operating System

Up to this point we have seen how to:

@ Obtain RT scheduling policies through Linux Scheduler

@ Use IRQ affinity and Cpusets to get CPU assignment
determinism on multiprocessor architecture

But we still don’t have a way to:

@ Preempt the kernel in most critical paths
@ Assign priority to IRQ handlers

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Linux as Real-Time Operating System The Real-Time Patch

The Real-Time Preemption Patch allows to cope with these
problems:

@ The patch is the continuation of the Montavista' real-time
preemptive patch, mainly due to Ingo Molnar

@ From Kernel 2.6.23 is completely integrated into mainline
kernel projects

The patch enables:
@ “Full” kernel preemption: non-preemptive kernel paths are
reduced to less than 5%
» Substitution of almost all spinlocks with semaphore locking
mechanisms (preemptable mutexes)

1

"http://source.mvista.com/linux_2_6_RT.html
Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 25/41

Linux as Real-Time Operating System The Real-Time Patch

Further modification of RT scheduler load-balancing:

@ Load-accounting and load-balancing are optimized for
real-time tasks

@ Balancing decisions are taken only before or after a context
switch (“inside” schedule ())

@ Try to keep runqueues from being overloaded:

» Attempt to place all topmost priority real-time tasks on
different CPUs

@ When a high priority task wakes up (and it would preempt
the currently executing one), check if it can run on a less
loaded CPU

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 26/ 41

Linux as Real-Time Operating System The Real-Time Patch

Threading of IRQ handlers:
@ Both soft and hard interrupts handlers are threaded

» All softirgs and all (or selected) hardirgs run in separate
kernel threads

@ We can control the priority assigned to an IRQ handler

@ Higher priority handlers will be executed before lower
priority ones

Improved synchronization mechanisms:

@ Real-Time Mutexes with priority inheritance extends Priority
Inheritance Mutexes (PI-futexes)
» Used in pthread_mutex with prio inheritance
implementation

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 27 /41

Linux as Real-Time Operating System The Real-Time Patch

Recall high level of modularity of scheduling classes:

@ Each class is placed in an hierarchy of classes; the
real-time class is the topmost priority class and its tasks are
evaluated first

@ We can modify the RT scheduling policy:

» Completely disable load-balancing heuristics
» ...speeding-up scheduler execution

@ To introduce such a modification we “just” have to:

» Implement the new scheduling class
» Hook the scheduling class functions in the scheduler core
through the struct sched_class structure ¢
3

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 28 /41

“

| have talked a lot. .. but what about performance measures?
Hard Real-Time

@ Platform: SBC Concurrent Technologies 417/03x; Intel
Core 2 Duo T7400, 4GB RAM, Sata HDD

@ OS: Linux 2.6.23.9 with RT patch and new real-time
scheduling class which disables load balancing among
processors

@ We measure the period jitter (Standard Deviation) in the
execution of a periodic real-time task

@ Task periodicity is obtained by reprogramming the RTC (so
that it ticks every ~ 64Hz)

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 29 /41

Conclusion

Rescheduling Serial Line

=

Scheduler Scheduler

RTC IRQ
Periodic 64Hz

)

System was configured using cpusets and giving higher priority
to RTC IRQ handler

Current
Previous

J

Ocilloscope

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

“

@ A comparison between performances obtained using
standard Linux kernel and kernel with RT patch, cpusets
and IRQ prioritarization.

@ “Load” is composed by a mixture of different loads
(CPU, memory and disk)

NO LOAD

min(ms) | max(ms) | mean(ms) | StdDev(us)
Linux 2.6.23 Std | 15.59 15.71 15.63 46.30
Linux 2.6.23 RT | 15.59 15.71 15.63 46.18

LOAD

min(ms) | max(ms) | mean(ms) | StdDev(us)
Linux 2.6.23 Std 1.04 33.16 16.11 3310
Linux 2.6.23 RT | 15.59 15.71 15.62 45.21 1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 31/41

Conclusion

Linux 2.6.23 Standard vs Linux 2.6.23 RT (Load - NoLoad)

Linux 26,23 Std ——
Linux 2.6.23 RT ——

13 14 15 16 17 18

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Conclusion

IRQ threading and priority assignment to IRQ handlers:
@ How to create a repeatable experiment to effectively verify
IRQ prioritarization?
@ Modify the IRQ handler of a popular device (e.g. Keyboard
i8042) so that a single execution of the handler will last for a

sensible amount of time

Expected IRQ RTC duration Effective IRQ RTC duration

! -

Interrupt RTC

Interrupt KBD 4%

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Conclusion

@ Quantitative performances:

Andrea Bastoni (SPRG, Univ. Tor Vergata)

Hard Real-Time Linux

NO Interrupts
min(ms) | max(ms) | mean(ms) | StdDev(us)
Linux 2.6.23 Std | 15.59 15.71 15.63 48.69
Linux 2.6.23 RT | 15.59 15.71 15.62 45.44
KBD interrupts
min(ms) | max(ms) | mean(ms) | StdDev(us)
Linux 2.6.23 Std | 7.280 19.86 15.43 1368
Linux 2.6.23 RT | 15.59 15.71 15.63 47.44
£

Conclusion

Linux 2.6.23 Standard vs Linux 2.6.23 RT (KBD test)

Linux 26,23 Std ——
Linux 2.6.23 RT ——

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

“

Soft Real-Time

@ Idea: Test soft real-time kernel features in the typical
application context of Audio Streaming

@ We selected VideoLan VLC for both streaming server and
clients

@ Server offers 70 Audio Streams which are asked by clients
using Real-Time Streaming Protocol (RTSP)

» Stream transfer is done via RTP

@ We measure the interarrival frame jitter (RFC 3550)
relatively to frames in the same stream

@ We remove head and tail jitter data and we focus on the
central part of each audio stream transfer FoN

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 36 /41

“

@ Server: AMD Athlon 64 X2 Dual-Core 4000+ (2.1GHz), 1
GB RAM, Sata HDD, Slamd64, Linux 2.6.24.3

@ Clients: Dual-Core AMD Opteron 8212 (4 Dual-Core
processors, 2GHz each), 16 GB Ram, Sata HDD, Slamd64,
Linux 2.6.24.3

@ Gigabit Ethernet connection link

@ One client CPU (two cores) is reserved to network traffic
sniffing, while all the other CPUs are dedicated to VLC
clients

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 37/41

Conclusion

@ Two server configurations:

» Normal: load-balancing is allowed

» Cpusets: load-balancing is disabled by appropriate tasks
partitioning

@ Two load scenarios:

» Light load (“only” the streaming server)
» Heavy load (CPU an disk load plus streaming server load)

ﬁ

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Conclusion

Light load, Normal configuration

i) T T T T

r||ean Delay
Hax Jitter
Hean Jitter
568 - b
48 1
38 - 1
@
£
28 - 1
18 b
al
a 18 20 38 48 58 i) t

drea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

Conclusion

Heavy load, Normal configuration vs. Cpuset configuration

2
Nornal Max Jitter
Hornal Hean Jitter
Cpuset Max Jitter
Cpuset Hean Jitter
1.5
s
2 8.5
8l
-8.5
N . ‘ ‘ ‘ . 1y
L] 18 28 38 4@ 58 i) -
L]

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux

“

@ The times when speaking about Real-Time Linux was a
scary topic are over. ..

@ Linux is already a very good soft real-time system. ..

@ Linux in its real-time variants (Mono / Dual Kernel) is able to
provide predictable and reliable hard real-time
performances

@ In its rapid evolution, Linux is moving towards a good yet
flexible hard real-time support

@ Of course, the road to strong hard real-time performances
or to certification is long and winding. . .

1

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 41 /41

	Introduction
	Real-Time

	Linux as Real-Time Operating System
	Overview
	Dual Kernel architecture
	Dual Kernel Advantages
	Dual Kernel Disadvantages
	Considerations on Dual Kernel Approach
	Linux Kernel's Support to Real-Time
	Scheduling
	Affinity and Cpuset
	The Real-Time Patch

	Conclusion
	Results

