
Hard Real-Time Linux
(or: How to Get RT Performances Using Linux)

Andrea Bastoni

University of Rome “Tor Vergata”
System Programming Research Group

bastoni@sprg.uniroma2.it

Linux Kernel Hacking Free Course IV Edition

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 1 / 41



Introduction Real-Time

What is a “Real-Time” System

A general (informal and incomplete) definition:

A real-time system should complete its work accordingly to
precise temporal constraints

Is it enough?

What about the consequences of a malfunctioning?

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 2 / 41



Introduction Real-Time

What is a “Real-Time” System (Cont.)

Hard Real-Time
Soft Real-Time

Some possible criteria to draw their definitions:

1 Criticality of consequences of a failure
(on both system and environment)

I What is a generally acceptable definition of critical failure?
2 Usefulness of late work completion (job tardiness)

I How to evaluate the usefulness of a late completion?
3 Probabilistic considerations

I No accounting of possible consequences

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 3 / 41



Introduction Real-Time

What is a “Real-Time” System (Cont.)

An operational definition:
Hard Real-Time: a certification (formal proof, etc.) is
needed to show that deadlines will always be met.
Soft Real-Time: such a certification is not needed: good
statistical averages or testing evidences will generally
suffice.

These definitions do not fully cover the complexity of the field
though.

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 4 / 41



Introduction Real-Time

What is a “Real-Time” System (Cont.)

Some questions:

What are deadlines and who provides them?
And on which bases?

I Generally settled starting from job criticality, output
usefulness etc.

I Risk assessment and deadline-based “countermeasures”
defined in Specification Documents

Is it so easy to prove (100%) a system to behave correctly?
I Various methodologies: WCET Analysis, formal proofs,

exhaustive testing (not always applicable)

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 5 / 41



Introduction Real-Time

Real-Time Applications Features

Distinctive features:

Real-Time side
Predictability
Reliability
Performances (not
always)

Embedded side
Power awareness
Compactness
Scalability

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 6 / 41



Introduction Real-Time

Real-Time Operating Systems Features

A Real-Time Operating System (RTOS) should be able to offer
the right execution environment to well suited RT Applications.

This means:
Predictable and efficient scheduling

I Fixed Priority Scheduling (e.g. Rate Monotonic)
I Dynamic Priority Scheduling (e.g. Earliest Deadline First)

Predictable interrupt handling and low-latency IRQ
dispatching
Task communication and synchronization support
Resource allocation policies
(Prio Inheritance, Prio Ceiling . . . )

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 7 / 41



Linux as Real-Time Operating System Overview

Linux as RTOS

Is Linux a Real-Time Operating System?

Sometimes . . .

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 8 / 41



Linux as Real-Time Operating System Overview

Linux as (S)RTOS

Linux is a Soft Real-Time Operating System:

It is optimized to provide:
Good average response time
High throughput

Suitable for:
Multimedia Applications
VoIP
Video / Audio Streaming

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 9 / 41



Linux as Real-Time Operating System Overview

Linux as RTOS

Main native features to support Real-Time:

Two real-time scheduling policies
I FIFO (SCHED_FIFO)
I Round-Robin (SCHED_RR)

Fast IRQ management (“two stage” handling)
High responsiveness (high resolution timers,
1000Hz tick . . . )
Preemptive kernel

. . . and what about predictability?

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 10 / 41



Linux as Real-Time Operating System Overview

Linux as (H)RTOS

Linux has “some” problems with predictability:

1 Several paths in the kernel cannot be preempted
2 Interrupts are disabled in critical sections of many handlers
3 Non-predictable Interrupt Service Routines (ISR)

management: fast ack to devices, but most “bottom-half”
handler’s durations are not predictable (e.g. Disk I/O)

4 IRQ management doesn’t consider priorities

Furthermore:
5 Quite high (w.r.t. HRT performances) scheduling latency for

user mode processes

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 11 / 41



Linux as Real-Time Operating System Overview

Linux as (H)RTOS

How to overcome these problems:

Mono Kernel Approach
I Changes are done directly into the kernel source
I Porting should be done through kernel versions
I Mostly commercial: TimeSys Linux, MontaVista Linux . . .

Dual Kernel Approach
I Changes are done locally: simplified porting
I New (and complex) intermediate layer between Hardware

and OS
I Mostly Open Source: RTAI, RTLinuxFree - PaRTiKle,

Xenomai
I But some commercial as well: Wind River Real-Time Core

Linux

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 12 / 41



Linux as Real-Time Operating System Dual Kernel architecture

Dual Kernel Approach

Ideas:
Insert an Hardware
Abstraction Layer
between HW and
OSes
Run Linux as a
“normal” low priority
process on top of
a real-time scheduler

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 13 / 41



Linux as Real-Time Operating System Dual Kernel Advantages

Dual Kernel Pros

Dual Kernel approach allows:

Very Low latency IRQ response
Predictable IRQ handling (response time can be bound
from above)
Reliable scheduling policy (FIFO, RR, RM, EDF)
Fast task switching
Resource allocation policies explicitly take into account
tasks priority
Ad-hoc synchronization mechanisms

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 14 / 41



Linux as Real-Time Operating System Dual Kernel Disadvantages

Dual Kernel Cons

But:
When calling standard library functions we may loose
“real-time characteristics”
So we must stay in kernel mode: calls to non real-time
library functions are not allowed
Drivers have to be suitable for “hard real-time”
To exploit OS real-time performances we may have to use
“non compliant” API (sometimes proprietary)
Generally limited interprocess communication with Linux
standard applications

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 15 / 41



Linux as Real-Time Operating System Considerations on Dual Kernel Approach

What to do then?

Positive aspects generally counterbalance negative ones
I We can afford the extra programming effort and limitations

In some cases though, dual kernel disadvantages are
unacceptable

I It would be great to (1) have a way to “do real-time” using the
standard kernel and (2) to be able to obtain good
performances staying in User Mode

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 16 / 41



Linux as Real-Time Operating System Linux Kernel’s Support to Real-Time

Kernel’s native support to Hard Real-Time

Some questions:

What kernel’s features can be exploited to get Hard
Real-Time performances?
How to cope with load balancing on SMP architectures
Is there a way to increase kernel preemptability level?

. . . and some answers:

Real-Time Scheduling Policies and Scheduling Classes
CPU affinity (IRQs affinity, tasks affinity)
Cpusets and sched_domain

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 17 / 41



Linux as Real-Time Operating System Scheduling

Scheduler and Scheduling Classes

New (≥ 2.6.23) scheduling approach:

Mainly due to Ingo Molnar, working on Con Kolivas’
“fair-scheduling” approach
Introduction of Completely Fair Scheduling (for conventional
processes), which models “an ideal, precise multi-tasking
CPU”
Introduction of Scheduling Classes:

I Hierarchy of scheduler modules that incapsulate the details
of their scheduling policy

I Clean interface between the scheduler core and scheduler
modules

I Clear scheduler modules separation: one file per class
(sched_rt.c, sched_fair.c, sched_idletask.c)

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 18 / 41



Linux as Real-Time Operating System Scheduling

Scheduler and Scheduling Classes (cont.)

The scheduler core can handle different classes (and
different policies) without assuming too much about them
It simply begins to walk the hierarchy from top and
delegates tasks selection and management to classes
It is easier to modify policies or introduce new ones
sched_rt.c: SCHED_FIFO and SCHED_RR policies:

I Highest prio module in the hierarchy
I RT tasks management completely distinct from conventional

processes one
I Single runqueue with 100 priority levels
I O(1) task selection bitmap-based

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 19 / 41



Linux as Real-Time Operating System Scheduling

Scheduler and SMP management

Renewed SMP load-balancing

Scheduler core relies on classes policies to choose which
processes to move

Selection of processes to move is done through iterators
(provided by each class)

Scheduler core is unaware of strategies chosen by classes
to balance tasks

Different classes may implement different strategies

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 20 / 41



Linux as Real-Time Operating System Affinity and Cpuset

CPU Affinity

The idea:

Use affinity mechanisms provided in the kernel to bind a
real-time task and its relative interrupts on a CPU
Prevent other tasks and IRQs to be executed on that CPU

This path has been already followed in
ASymmetric MultiProcessor-Linux which allows to obtain:

1 Deterministic execution time
2 Low system overhead
3 High performances and responsiveness

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 21 / 41



Linux as Real-Time Operating System Affinity and Cpuset

CPU Affinity and Cpusets

How to assign IRQs and tasks to CPUs:
Binding interrupts on a CPU(s) can be easily done by using
the procfs
sched_setaffinity syscall can be used to bind a task
to a CPU

Cpusets offer more flexibility:
Cpuset provides a mechanism to associate a set of CPUs
(and of Memory Nodes) with a set of tasks
All task’s children are automatically executed in the same
set of their parent

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 22 / 41



Linux as Real-Time Operating System Affinity and Cpuset

Cpusets and Real-Time

A cpuset defines a scheduling domain which covers all the
CPUs included in the cpuset
Load Balancing is done only inside a sched_domain

Cpusets allow to easily control tasks distribution (and
isolation) on system CPUs
Cpusets can be effectively used to define a partitioning of
system CPUs. This is often the first step of several
multiprocessor real-time scheduling policies
If used together with IRQ affinity we can enforce real-time
tasks isolation w.r.t. other non-real-time tasks in the system

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 23 / 41



Linux as Real-Time Operating System Affinity and Cpuset

Still unanswered questions

Up to this point we have seen how to:

Obtain RT scheduling policies through Linux Scheduler
Use IRQ affinity and Cpusets to get CPU assignment
determinism on multiprocessor architecture

But we still don’t have a way to:

Preempt the kernel in most critical paths
Assign priority to IRQ handlers

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 24 / 41



Linux as Real-Time Operating System The Real-Time Patch

The Real-Time Patch

The Real-Time Preemption Patch allows to cope with these
problems:

The patch is the continuation of the Montavista1 real-time
preemptive patch, mainly due to Ingo Molnar
From Kernel 2.6.23 is completely integrated into mainline
kernel projects

The patch enables:
“Full” kernel preemption: non-preemptive kernel paths are
reduced to less than 5%

I Substitution of almost all spinlocks with semaphore locking
mechanisms (preemptable mutexes)

1http://source.mvista.com/linux_2_6_RT.html
Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 25 / 41



Linux as Real-Time Operating System The Real-Time Patch

The Real-Time Patch (Cont.)

Further modification of RT scheduler load-balancing:

Load-accounting and load-balancing are optimized for
real-time tasks
Balancing decisions are taken only before or after a context
switch (“inside” schedule())
Try to keep runqueues from being overloaded:

I Attempt to place all topmost priority real-time tasks on
different CPUs

When a high priority task wakes up (and it would preempt
the currently executing one), check if it can run on a less
loaded CPU

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 26 / 41



Linux as Real-Time Operating System The Real-Time Patch

The Real-Time Patch (Cont.)

Threading of IRQ handlers:
Both soft and hard interrupts handlers are threaded

I All softirqs and all (or selected) hardirqs run in separate
kernel threads

We can control the priority assigned to an IRQ handler
Higher priority handlers will be executed before lower
priority ones

Improved synchronization mechanisms:
Real-Time Mutexes with priority inheritance extends Priority
Inheritance Mutexes (PI-futexes)

I Used in pthread_mutex with prio inheritance
implementation

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 27 / 41



Linux as Real-Time Operating System The Real-Time Patch

Can we do better?

Recall high level of modularity of scheduling classes:

Each class is placed in an hierarchy of classes; the
real-time class is the topmost priority class and its tasks are
evaluated first
We can modify the RT scheduling policy:

I Completely disable load-balancing heuristics
I . . . speeding-up scheduler execution

To introduce such a modification we “just” have to:
I Implement the new scheduling class
I Hook the scheduling class functions in the scheduler core

through the struct sched_class structure

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 28 / 41



Conclusion Results

Some results (HRT)

I have talked a lot. . . but what about performance measures?
Hard Real-Time

Platform: SBC Concurrent Technologies 417/03x; Intel
Core 2 Duo T7400, 4GB RAM, Sata HDD
OS: Linux 2.6.23.9 with RT patch and new real-time
scheduling class which disables load balancing among
processors
We measure the period jitter (Standard Deviation) in the
execution of a periodic real-time task
Task periodicity is obtained by reprogramming the RTC (so
that it ticks every ≈ 64Hz)

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 29 / 41



Conclusion Results

Some results (HRT)

System was configured using cpusets and giving higher priority
to RTC IRQ handler

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 30 / 41



Conclusion Results

Some results (HRT)

A comparison between performances obtained using
standard Linux kernel and kernel with RT patch, cpusets
and IRQ prioritarization.
“Load” is composed by a mixture of different loads
(CPU, memory and disk)

NO LOAD
min(ms) max(ms) mean(ms) StdDev(µs)

Linux 2.6.23 Std 15.59 15.71 15.63 46.30
Linux 2.6.23 RT 15.59 15.71 15.63 46.18

LOAD
min(ms) max(ms) mean(ms) StdDev(µs)

Linux 2.6.23 Std 1.04 33.16 16.11 3310
Linux 2.6.23 RT 15.59 15.71 15.62 45.21

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 31 / 41



Conclusion Results

Some results (HRT)

Linux 2.6.23 Standard vs Linux 2.6.23 RT (Load - NoLoad)

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 32 / 41



Conclusion Results

Some results (HRT)
IRQ threading and priority assignment to IRQ handlers:

How to create a repeatable experiment to effectively verify
IRQ prioritarization?
Modify the IRQ handler of a popular device (e.g. Keyboard
i8042) so that a single execution of the handler will last for a
sensible amount of time

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 33 / 41



Conclusion Results

Some results (HRT)

Quantitative performances:

NO Interrupts
min(ms) max(ms) mean(ms) StdDev(µs)

Linux 2.6.23 Std 15.59 15.71 15.63 48.69
Linux 2.6.23 RT 15.59 15.71 15.62 45.44

KBD interrupts
min(ms) max(ms) mean(ms) StdDev(µs)

Linux 2.6.23 Std 7.280 19.86 15.43 1368
Linux 2.6.23 RT 15.59 15.71 15.63 47.44

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 34 / 41



Conclusion Results

Some results (HRT)

Linux 2.6.23 Standard vs Linux 2.6.23 RT (KBD test)

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 35 / 41



Conclusion Results

Some Results (SRT)

Soft Real-Time

Idea: Test soft real-time kernel features in the typical
application context of Audio Streaming
We selected VideoLan VLC for both streaming server and
clients
Server offers 70 Audio Streams which are asked by clients
using Real-Time Streaming Protocol (RTSP)

I Stream transfer is done via RTP

We measure the interarrival frame jitter (RFC 3550)
relatively to frames in the same stream
We remove head and tail jitter data and we focus on the
central part of each audio stream transfer

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 36 / 41



Conclusion Results

Some Results (SRT)

Server: AMD Athlon 64 X2 Dual-Core 4000+ (2.1GHz), 1
GB RAM, Sata HDD, Slamd64, Linux 2.6.24.3

Clients: Dual-Core AMD Opteron 8212 (4 Dual-Core
processors, 2GHz each), 16 GB Ram, Sata HDD, Slamd64,
Linux 2.6.24.3

Gigabit Ethernet connection link

One client CPU (two cores) is reserved to network traffic
sniffing, while all the other CPUs are dedicated to VLC
clients

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 37 / 41



Conclusion Results

Some Results (SRT)

Two server configurations:

I Normal: load-balancing is allowed
I Cpusets: load-balancing is disabled by appropriate tasks

partitioning

Two load scenarios:

I Light load (“only” the streaming server)
I Heavy load (CPU an disk load plus streaming server load)

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 38 / 41



Conclusion Results

Some Results (SRT)

Light load, Normal configuration

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 39 / 41



Conclusion Results

Some Results (SRT)

Heavy load, Normal configuration vs. Cpuset configuration

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 40 / 41



Conclusion Results

Conclusions

The times when speaking about Real-Time Linux was a
scary topic are over. . .

Linux is already a very good soft real-time system. . .

Linux in its real-time variants (Mono / Dual Kernel) is able to
provide predictable and reliable hard real-time
performances

In its rapid evolution, Linux is moving towards a good yet
flexible hard real-time support

Of course, the road to strong hard real-time performances
or to certification is long and winding. . .

Andrea Bastoni (SPRG, Univ. Tor Vergata) Hard Real-Time Linux 30/04/2008 41 / 41


	Introduction
	Real-Time

	Linux as Real-Time Operating System
	Overview
	Dual Kernel architecture
	Dual Kernel Advantages
	Dual Kernel Disadvantages
	Considerations on Dual Kernel Approach
	Linux Kernel's Support to Real-Time
	Scheduling
	Affinity and Cpuset
	The Real-Time Patch

	Conclusion
	Results


