
Linux and Xen

Andrea Sarro

andrea.sarro(at)quadrics.it

Linux Kernel Hacking Free Course IV Edition

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 1 / 37



Introduction Xen and Virtualization

What is Xen?

Xen is an open source platform virtualization solution:

It was born as part of University of Cambridge XenoServers
research project

I XenoServers is aimed to provide a public infrastructure for
distributed computing

I XenoServers offers the possibility to deploy untrusted services and
execute untrusted code on a shared platform with resource sharing
and without security issues

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 2 / 37



Introduction Xen and Virtualization

What is Xen? (cont)

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 3 / 37



Introduction Xen and Virtualization

What is (Platform) “Virtualization”?

1 Virtualization provides the ability to run several isolated execution
environments over a single physical machine

2 Virtualization hides the physical characteristics of computational
resources to simplify interaction mechanisms with other systems,
applications and end users

3 Virtualization is the logical representation of resources without
physical constraints

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 4 / 37



Introduction Xen and Virtualization

Why Virtualize?

Main virtualization goals:
Increase resource utilization and throughput

Decrease operational costs

Provide isolation between applications and between users

Main applications:
Server consolidation

Legacy applications execution

Untrusted code execution

Concurrent execution of different OS instances

Software migration (for HA and Fault Tolerance)

Software appliances

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 5 / 37



Introduction Xen and Virtualization

Virtualization History

From the beginnings (mainframes era)...
’60s: IBM M44/44X

1972: IBM VM/370 for System/370

to modern times (PCs era)...
2001: VMware Enterprise ESX Server

2005: Intel VT-x and AMD-V

2006: Gartner “Top 10 Strategic Technologies List”: 1st place
assigned to virtualization technology

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 6 / 37



Introduction Xen and Virtualization

Virtualization History - Xen

Main Xen milestones:

2003: First Xen public release. Official presentation at SOSP
(Symposium on Operating System Principles)

Early 2005: XenSource Inc. was founded by project developers

End of 2005: Xen 3.0 release with hardware virtualization
technologies support

2007: XenSource acquisition by Citrix Systems; concomitant
creation of the “Xen Advisory Board”

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 7 / 37



Introduction Xen and Virtualization

Virtualization Key Concepts

Typical components of a platform virtualization solution:
Hardware (host)
Virtual Machine Monitor (VMM)
Virtual Machine (VM)
Guest Software (guest OS + guest applications)

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 8 / 37



Introduction Xen and Virtualization

Virtualization Techniques

There are several platform virtualization techniques, each one with
pros and cons:

System Emulation

Full Virtualization

Paravirtualization

Operating System Level Virtualization

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 9 / 37



Introduction Xen and Virtualization

System Emulation

All instructions are translated by the emulation layer
It allows execution of code for a different architecture than the
physical processor one
Emulation imposes a huge performance overhead due to full code
translation

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 10 / 37



Introduction Xen and Virtualization

Full Virtualization

Instructions are translated only when necessary, otherwise they
are executed unaltered by the processor
It allows execution of not modified guest operating systems that
support the physical processor architecture
It uses trap & emulate and binary rewriting techniques

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 11 / 37



Introduction Xen and Virtualization

Paravirtualization

It requires cooperation between VMM and guest OS
The VMM exports an interface accessible from the VMs
The guest OS has to be modified to access these new interfaces

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 12 / 37



Introduction Xen and Virtualization

Operating System Level Virtualization

It uses only one instance of the operating system
The OS guarantees isolation and independence of guest software
execution environments (containers)
From a performance perspective, it resembles the native
unmodified operating system

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 13 / 37



Linux and Xen Xen VMM

Xen Hypervisor

Xen is an open source Virtual Machine Monitor (hypervisor) that
adopts the paravirtualization technique. It requires Linux to be
modified in order to allow execution inside a virtual machine.

Xen virtualization solution for x86 architecture:
The analyzed processor architecture is IA-32, also known as x86.
Xen also supports IA-32e, also known as x86-64 (not analyzed in
this presentation)
Xen 3.1 is the Virtual Machine Monitor (VMM), also called
hypervisor
Linux 2.6.20 is the guest operating system

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 14 / 37



Linux and Xen Xen VMM

Ring Deprivileging

Xen adopts a ring deprivileging strategy, assigning IA-32 protection
rings in a different fashion than Linux:

Ring 0 is assigned to the Xen hypervisor, while in Linux vanilla is
used by the kernel for kernel mode execution

Ring 1 is assigned to the Linux kernel, requiring modifications to
behavior sensitive code (instructions that change silently their
behavior if executed with CPL 6= 0)

Ring 3 is used for user mode execution like in Linux vanilla, so
applications don’t have to be modified to be executed inside a
virtual machine

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 15 / 37



Linux and Xen Xen VMM

Ring Deprivileging (cont)

Ring deprivileging is necessary in order to allow exclusive hardware
control only to the Xen hypervisor.

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 16 / 37



Linux and Xen Xen VMM

Xen Architecture

Xen calls the virtual machines domains. There are two kinds of
domains:

Domain 0 (“privileged” domain), built during system startup
Domain U (“unprivileged” domain(s)), launched by administration
tools in domain 0

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 17 / 37



Linux and Xen Linux and Xen

Linux and Xen

Due to ring deprivileging, Linux as a guest OS has to be modified in
the following aspects:

Execution of behavior sensitive code (and also most of privileged
code for performance reasons) has to be performed via hypercalls

Handling mechanisms for interrupts and exceptions have to be
defined

A split driver architecture for I/O device drivers has to be
implemented

Memory management should take into account memory
virtualization

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 18 / 37



Linux and Xen Hypercalls

Hypercalls

While privileged instructions (that require CPL = 0) generate a trap to
the hypervisor via GPFs, there are mainly two reasons for explicitly
calling the hypervisor:

Reduce performance hit due to trap & emulate
Execute behavior sensitive code

Hypercalls are similar to (legacy) Linux system calls:

They represent an entry point to the hypervisor facilities
The switch between the guest operating system and the
hypervisor is demanded to a software interrupt (int 0x82)

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 19 / 37



Linux and Xen Hypercalls

Hypercalls (cont)

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 20 / 37



Linux and Xen Exceptions

Exceptions

In Linux vanilla the IDT is initialized in trap_init() using
set_<type>_gate() functions.

Because Xen handles the IDT, it requires all calls to these function to
be replaced with a single call to the
HYPERVISOR_set_trap_table() hypercall.

HYPERVISOR_set_trap_table() accepts as a parameter the
virtual IDT of the guest, represented by the trap_table structure (of
type struct trap_info) in traps-xen.c.

struct trap_info resembles a trap or interrupt gate, having fields
for vector, handler segment selector and offset.

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 21 / 37



Linux and Xen Exceptions

Exceptions (cont)

When an exception occurs the processor transfers control to the Xen
hypervisor, using the Xen exception handlers in entry.S.

If the exception was caused by the guest OS, these handlers call
do_guest_trap.

do_guest_trap:
1 Gets from the guest context the gate for the exception
2 Creates the exception frame required by the guest OS to process

the exception

Then iret is executed to return control to the guest OS exception
handler

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 22 / 37



Linux and Xen Event channels

Event Channels

Event channels are the Xen facility used to notify events between VMM
and domains.

They are used for hardware interrupt notification to domains and for
signaling a pending event, like a termination request.

Event channel:
An event channel represent a binary information (1 bit)
When an event occurs this information changes from 0 to 1,
behaving as a notification flag (pending flag)

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 23 / 37



Linux and Xen Event channels

Event Channels (cont)

Event channel operations are invoked through the
HYPERVISOR_event_channel_op hypercall, specifying a command
and a list of arguments.

An event channel can be viewed as a communication channel through
which an event is transmitted:

Event channel instances are called ports

Event channel operations include bind (to another port or to an
IRQ), send, close

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 24 / 37



Linux and Xen Interrupts

Interrupts

In Xen interrupts to be notified to the Linux guest OS are handled
through the event channels notification mechanism.

During startup the guest OS installs two handlers (event and failsafe)
via the HYPERVISOR_set_callbacks hypercall:

The event callback is the handler to be called to notify an event to
the guest OS
The failsafe callback is used when a fault occurs when using the
event callback

The guest OS can install a handler for a physical IRQ through the
HYPERVISOR_event_channel_op hypercall, specifying as operation
EVTCHNOP_bind_pirq.

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 25 / 37



Linux and Xen Interrupts

Interrupts (cont)

When an interrupt occurs control passes to the Xen
common_interrupt routine, that calls the Xen do_IRQ function.

do_IRQ:
Checks who has the responsibility to handle the interrupt:

The VMM: the interrupt is handled internally by the VMM
One ore more guest OS: it calls __do_IRQ_guest function

__do_IRQ_guest:
For each domain that has a binding to the IRQ sets to 1 the pending
flag of the event channel via send_guest_pirq

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 26 / 37



Linux and Xen Interrupts

Interrupts (cont)

The entry point in Linux is the hypervisor_callback function (is
the event callback handler installed at startup), that calls
evtchn_do_upcall.

evtchn_do_upcall:
1 Checks for pending events
2 Resets to zero the pending flag
3 Uses the evtchn_to_irq array to identify the IRQ binding for

the event channel
4 Calls Linux do_IRQ interrupt handler function

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 27 / 37



Linux and Xen I/O device driver model

I/O device driver model

Xen doesn’t include device drivers (except those strictly required to
boot) for the hardware platform, but dispatches this task to the domain
0 Linux operating system.

To support the split driver architecture, Linux has to provide two kinds
of drivers:

Backend drivers (executed in domain 0): they receive requests
from the domain U frontend drivers, doing multiplexing and
sequencing and communicating with the real device driver.
Responses are demultiplexed and sent back to the domain U
frontend drivers.
Frontend drivers (executed in domain U): they substitute the real
device drivers for the end applications, exporting a compatible
interface. All requests are forwarded to the domain 0 backend
drivers.

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 28 / 37



Linux and Xen I/O device driver model

I/O device driver model (cont)

A frontend driver communicates with the corresponding backend driver
through two facilities, managed by Xen:

Shared memory (and descriptor rings)

Event channels (interdomain)

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 29 / 37



Linux and Xen I/O device driver model

I/O device driver model (cont)

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 30 / 37



Linux and Xen I/O device driver model

I/O device driver model (cont)

A descriptor ring is a circular buffer used in a producer/consumer
fashion to support transfer of requests and responses.

Notification has to be performed using event channels, providing the
opportunity of batching requests/responses.

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 31 / 37



Linux and Xen I/O device driver model

I/O device driver model (cont)

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 32 / 37



Linux and Xen Memory management

Memory management

Memory virtualization is a hard task to accomplish on IA-32
architecture because:

IA-32 TLB can’t be managed by software
A TLB flush is required at each domain switch

Guidelines followed during Xen memory management strategy
development:

Each guest operating system should be responsible for its page
table management, keeping at minimum Xen intervention
Top 64 MB of the address space in each domain are reserved to
Xen, in order to not require a TLB flush during transitions between
guests and VMM

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 33 / 37



Linux and Xen Memory management

Memory management (cont)

Xen distinguishes between two kinds of memory:
Machine memory: it’s the whole physical memory in the system
Pseudo-physical memory: it’s an abstraction valid for each
domain, allowing the guest OS to consider it’s own memory as a
contiguous block, hiding the underlying potentially fragmented
physical layout (machine memory)

Two translation tables are defined:
machine-to-pseudophysical: maintained by Xen, maps machine
addresses to pseudo-physical addresses
pseudophysical-to-machine: maintained by each domain, maps
pseudo-physical addresses to machine addresses

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 34 / 37



Linux and Xen Memory management

Memory management (cont)

Using this kind of memory organization only guest OS routines that
require the knowledge of the real physical layout have to be modified
(i.e. page table management), while other routines can continue to
operate unmodified on pseudo-physical memory.

Xen handles page tables in three different ways:
Read Only Page Tables
Writable Page Tables
Shadow Page Tables

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 35 / 37



Conclusion Concluding remarks

Concluding remarks

Xen is a powerful platform virtualization solution.

Because it adopts the paravirtualization technique it requires the
guest OS (i.e. Linux) to be modified in order to use the interfaces
exported by the VMM to the virtual machines.

Beginning from version 3.0, Xen supports hardware virtualization
technologies, like Intel VT-X, though it’s HVM (Hardware Virtual
Machine) component:

I When adopting these technologies Xen is a full virtualization
solution, that can run unmodified guest operating systems (except
for domain 0).

I When HVM is enabled, Xen pays a substantial performance
overhead in I/O operations and memory management compared to
Xen PV (paravirtualized).

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 36 / 37



Conclusion Concluding remarks

Concluding remarks (cont)

Xen performance overhead compared to Linux vanilla (preliminary
results from simple real world benchmarks, like kernel compile time
and kernel archive decompress time):

Xen PV has a small overhead [3-10%]
Xen HVM has a huge overhead [30-60%]

Further performance studies are being developed to understand the
performance overhead in real scenarios and to evaluate scalability and
security of virtualization solutions.

A Xen PV drawback: Xen patches for the Linux kernel are not always
available for the last stable version of the kernel.

Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 37 / 37


	Introduction
	Xen and Virtualization

	Linux and Xen
	Xen VMM
	Linux and Xen
	Hypercalls
	Exceptions
	Event channels
	Interrupts
	I/O device driver model
	Memory management

	Conclusion
	Concluding remarks


