
HPC-Linux

A new Linux scheduler to balance HPC
applications

Roberto Gioiosa1

1Computer Science Division
Barcelona Supercomputing Center

roberto.gioiosa@bsc.es

Linux Kernel Hacking 2008

R.Gioiosa (BSC) LKH08 - 21st May 2008 1 / 47

HPC-Linux

Outline

1 Supercomputing
Parallel Computing
How many Chickens? The Top500 list
Problems with Parallel Computing

2 Load Imbalance
Balancing HPC applications through resource allocation
The IBM POWER5 processor
Experiments

3 HPCSched
The new Linux Scheduler
HPCSched design
Preliminary tests

4 Conclusion

R.Gioiosa (BSC) LKH08 - 21st May 2008 2 / 47

HPC-Linux

Outline

1 Supercomputing
Parallel Computing
How many Chickens? The Top500 list
Problems with Parallel Computing

2 Load Imbalance
Balancing HPC applications through resource allocation
The IBM POWER5 processor
Experiments

3 HPCSched
The new Linux Scheduler
HPCSched design
Preliminary tests

4 Conclusion

R.Gioiosa (BSC) LKH08 - 21st May 2008 3 / 47

HPC-Linux

High Performance Computing

Very often High Performance Computing is achieved through Parallel
Computing, a form of computing in which many instructions are carried
out simultaneously.

Ideally, parallelizing a program in N parallel tasks reduces the
execution time by N times. Unfortunately, the speed-up is limited by the
Amdahl’s law:

Amdahl’s law

S =
1

(1− P) + P/N

where S is the speed-up, P the portion of the code that can be
parallelized and N the number of concurrent processes.
If P=0 (S=1) there is no speed-up; if P=1 the speed-up is infinite.

R.Gioiosa (BSC) LKH08 - 21st May 2008 4 / 47

HPC-Linux

Putting in simple words...

Let’s assume we have a wagon...

R.Gioiosa (BSC) LKH08 - 21st May 2008 5 / 47

HPC-Linux

Putting in simple words...

Let’s assume we have a wagon...

Are N chickens more powerful than a horse?

R.Gioiosa (BSC) LKH08 - 21st May 2008 5 / 47

HPC-Linux

Putting in simple words...

Let’s assume we have a wagon...

Are N chickens more powerful than a horse? If N is large enough...

R.Gioiosa (BSC) LKH08 - 21st May 2008 5 / 47

HPC-Linux

Putting in simple words...

Let’s assume we have a wagon...

Are N chickens more powerful than a horse? If N is large enough...
Chickens might overwhelm the horse!!! [S. Filippone, CA 2000]

R.Gioiosa (BSC) LKH08 - 21st May 2008 5 / 47

HPC-Linux

The Top500 list

Since 1993, the Top500 project has listed the 500 most powerful
computer systems in the world.
The list is compiled by high-performance computer experts,
computational scientists, manufacturers, and the Internet community.

The list is updated two times per year:
International Supercomputing Conferences (ISC) in June
(Germany)
Supercomputing Conference (SC) in November (US)

The ‘best’ performance are measured as the performance of the
LINPACK Benchmark (Jack Dongarra). LINPACK was chosen because
it is widely used and performance numbers are available for almost all
relevant systems.

R.Gioiosa (BSC) LKH08 - 21st May 2008 6 / 47

HPC-Linux

The Nov07 Top500 list

N Site Computer CPUs Rmax
1 LLNL BlueGene/L 212992 478200
2 FZJ BlueGene/P 65536 167300
3 NMCAC SGI AltixICE8200 Xeon QCore 3GHz 14336 126900
4 TATA EKA - HP Xeon 3GHz 14240 117900
5 Gov. HP Xeon 2.66GHz 13728 102800

...
13 BSC MareNostrum - PPC970MP 2.3Ghz 10240 63830

...
48 CINECA BladeCenter Xeon DCore 3.0Ghz 5120 19910

...
86 LANL Roadrunner 2 - Opteron DCore 4608 14070

...
91 LANL ASCI Q - Alpha 1.25Ghz 8192 13880

...
500 Sem C HP Xeon 1.86Ghz 1344 5929.6

R.Gioiosa (BSC) LKH08 - 21st May 2008 7 / 47

HPC-Linux

MareNostrum

MareNostrum is a supercomputer based on PowerPC 970MP
processors, the architecture BladeCenter, a Linux system and a
Myrinet interconnection.

When it first entered the Top500 list, MareNostrum was ranked as the
4th supercomputer with about 40 TFLOPS. Today, the machine holds
the 13th position (the 3rd in Europe) with about 64 TFLOPS.
R.Gioiosa (BSC) LKH08 - 21st May 2008 8 / 47

HPC-Linux

MareNostrum Architecture

94,21 TFLOPS PeakPerf
10240 IBM Power PC 970MP
processors at 2.3 GHz
20 TB of main memory

280 + 90 TB of disk storage
Myrinet and Gigabit Ethernet
Linux OS

R.Gioiosa (BSC) LKH08 - 21st May 2008 9 / 47

HPC-Linux

Country distribution

The most powerful supercomputers are in US, though Europe and Asia
are buying more and more powerful machines. Italy is still behind the
first group of European countries (Germany, UK, France, Spain,...)

R.Gioiosa (BSC) LKH08 - 21st May 2008 10 / 47

HPC-Linux

What is a supercomputer used for?

While supercomputers are
used for several different goals,
High Performance Computing
clusters are the largest system
architectures used nowadays.

R.Gioiosa (BSC) LKH08 - 21st May 2008 11 / 47

HPC-Linux

Linux for HPC systems

Linux is the most used OS for HPC computers

World Domination
“In the 1990s Linus Torvalds used to give a talk called World
Domination 101 on the early steps he believed Linux would need to
take to achieve world domination...

R.Gioiosa (BSC) LKH08 - 21st May 2008 12 / 47

HPC-Linux

Linux for HPC systems

Linux is the most used OS for HPC computers

World Domination
“In the 1990s Linus Torvalds used to give a talk called World
Domination 101 on the early steps he believed Linux would need to
take to achieve world domination... fast”

R.Gioiosa (BSC) LKH08 - 21st May 2008 12 / 47

HPC-Linux

Linux for HPC systems

Linux is the most used OS for HPC computers

World Domination
“In the 1990s Linus Torvalds used to give a talk called World
Domination 101 on the early steps he believed Linux would need to
take to achieve world domination... fast” ... we are on our way!

R.Gioiosa (BSC) LKH08 - 21st May 2008 12 / 47

HPC-Linux

Problems with parallel computing

Let’s suppose we have enough chickens to overwhelm a horse, i.e.,
the sum of the computing power of each processor in the cluster is
greater than the computing power of a mainframe:

R.Gioiosa (BSC) LKH08 - 21st May 2008 13 / 47

HPC-Linux

Problems with parallel computing

Let’s suppose we have enough chickens to overwhelm a horse, i.e.,
the sum of the computing power of each processor in the cluster is
greater than the computing power of a mainframe:

Can we make them going to the
same direction?

R.Gioiosa (BSC) LKH08 - 21st May 2008 13 / 47

HPC-Linux

Problems with parallel computing

Let’s suppose we have enough chickens to overwhelm a horse, i.e.,
the sum of the computing power of each processor in the cluster is
greater than the computing power of a mainframe:

Can we make them going to the
same direction?

And going to the same direction
with the same speed?

R.Gioiosa (BSC) LKH08 - 21st May 2008 13 / 47

HPC-Linux

Outline

1 Supercomputing
Parallel Computing
How many Chickens? The Top500 list
Problems with Parallel Computing

2 Load Imbalance
Balancing HPC applications through resource allocation
The IBM POWER5 processor
Experiments

3 HPCSched
The new Linux Scheduler
HPCSched design
Preliminary tests

4 Conclusion

R.Gioiosa (BSC) LKH08 - 21st May 2008 14 / 47

HPC-Linux

HPC applications

High Performance Computing (HPC) applications are usually Single
Process-Multiple Data (SPMD).

In SPMD applications, all the processes execute the same code
on different data sets and use synchronization primitives to
coordinate their work.

Since the processes execute the same code, they are supposed
to reach their synchronization points roughly at the same time.

However, some HPC applications suffer from load-imbalance, i.e. the
execution time of the processes in the parallel application is not the
same.

R.Gioiosa (BSC) LKH08 - 21st May 2008 15 / 47

HPC-Linux

Load-imbalance in HPC applications

If a process runs for longer than the others belonging to the same
application, all the other processes have to wait for that process to
complete its execution.

During this time the CPUs of the waiting processes are idle, resulting
in a significant loss of performance and waste of resources.

R.Gioiosa (BSC) LKH08 - 21st May 2008 16 / 47

HPC-Linux

Causes for load imbalance

The causes for load-imbalance can be internal or external to the
application (likely both):

Intrinsic The causes are internal to the application’s code, input
set or both.

Input set
Domain density
Data exchanging

Extrinsic External factors not under the control of the application
OS noise
User daemons
Network topology

R.Gioiosa (BSC) LKH08 - 21st May 2008 17 / 47

HPC-Linux

Summary of the problem

Though not easy, an expert programmer could reduce the intrinsic
imbalance in the application by tailoring the algorithm for a
particular system and/or balancing the input.

These operations should be repeated for each systems and data
input set

Extrinsic imbalance factors are neither under the control of the
application nor of the programmer

A mechanism that aims to solve the imbalance of an application should
be transparent to the user

R.Gioiosa (BSC) LKH08 - 21st May 2008 18 / 47

HPC-Linux

Hardware resource allocation

Our solution for balancing HPC applications consists of assigning
more hardware resources to the most computing-intensive processes..

Giving this process more hardware resource shall decrease its
execution time and the execution time of the whole MPI application.

It is not for free: the performance of the task running with less
resources will decrease!

R.Gioiosa (BSC) LKH08 - 21st May 2008 19 / 47

HPC-Linux

Run time hardware resource allocation

The proposed solution is very simple and does not make any
assumptions on the kind of application, the programming model or the
input set used.

The only assumption regards the underneath processor, which must
provide a shared resource control mechanism.

The approach is dynamic in the sense that the amount of resources
assigned to a process can be set at run time.

R.Gioiosa (BSC) LKH08 - 21st May 2008 20 / 47

HPC-Linux

The IBM POWER5 processor

The idea is general and can be applied to any processors that allows
the software to control the hardware resource allocation.

IBM POWER5 processors provide this kind of mechanism with the
hardware thread priority management.

Each context in a core has a hardware thread priority: as the
hardware thread priority of a context increases the amount of
hardware resources assigned to that context increases too.

Other MT processors like the IBM POWER6 or the Cell processor
are capable of dynamically allocating resources to the contexts at
run time.

R.Gioiosa (BSC) LKH08 - 21st May 2008 21 / 47

HPC-Linux

The hardware thread priority mechanism

Each thread can set its priority using an or-nop instruction:

Priority Priority level Privilege level or-nop inst.
0 Thread shut off Hypervisor -
1 Very low Supervisor or 31,31,31
2 Low User or 1,1,1
3 Medium-Low User or 6,6,6
4 Medium User or 2,2,2
5 Medium-high Supervisor or 5,5,5
6 High Supervisor or 3,3,3
7 Very high Hypervisor or 7,7,7

However, the processor core assigns the hardware resources
according to the difference of the priorities of the two threads.

R.Gioiosa (BSC) LKH08 - 21st May 2008 22 / 47

HPC-Linux

Thread priority implementation

The core processor assigns resources to each thread by decoding
more instructions from one context than from the other.

The number of decode cycles assigned to each thread depends on its
hardware priority: every R decode cycles, and it is computed as
R = 2|X−Y |+1

Prior. diff. R A B
0 2 1 1
1 4 3 1
2 8 7 1
3 16 15 1
4 32 31 1

* R.N. Kalla et al., IBM Journal of Research and Development: POWER5
System Microarchitecture
R.Gioiosa (BSC) LKH08 - 21st May 2008 23 / 47

HPC-Linux

Thread priority in Linux

The Linux 2.6.24 kernel only exploits hardware priorities in a limited
number of cases:

1 The processor is spinning for a lock in kernel mode. In this case
the priority of the spinning process is reduced.

2 A CPU is waiting in kernel mode for some operations to complete
(for example with smp_call_function()). In this case the
priority of the CPU is decreased until the operation completes.

3 The kernel is running the idle process. In this case the kernel
reduces the priority of the idle CPU and, eventually, put the core in
Single Thread (ST) mode.

R.Gioiosa (BSC) LKH08 - 21st May 2008 24 / 47

HPC-Linux

The HMT patch

In order to check that our approach can be used for balancing the HPC
application, we had to modify the original kernel code for two reasons:

1 Every time the CPU receives an interrupt, the interrupt handler
sets the priority back to MEDIUM (4)

2 Only few hardware priorities (2 (LOW), 3 (MEDIUM-LOW) and 4
(MEDIUM)) can be set at user mode level.

To set priority N for process <PID> a user shall simply write to a proc
file:

echo N > /proc/<PID>/hmt_priority

R.Gioiosa (BSC) LKH08 - 21st May 2008 25 / 47

HPC-Linux

Experimental environment

We tested our load-balancing solution on a IBM OpenPOWER 710
system equipped with an IBM POWER5 processor (2 cores, 2 contexts
per-core).

We ran on this machine a modified version of the Linux 2.6.19.2 kernel
that allows us to exploit priority levels from 1 to 6.

We performed our tests on three kind of applications:
1 MetBench: A microbenchmark suite developed at BSC (not in this

presentation)
2 BT-MZ from the NAS MPI benchmark suite
3 SIESTA: A real application commonly used by BSC’s researchers.

R.Gioiosa (BSC) LKH08 - 21st May 2008 26 / 47

HPC-Linux

BT-MZ: Case A

Proc Core P Comp Sync
% %

P1 1 4 17.63 82.32
P2 1 4 28.91 71.02
P3 2 4 66.47 33.4
P4 2 4 99.72 0.09

Test Imb Exec.
% Time

A 82.23 81.64s

R.Gioiosa (BSC) LKH08 - 21st May 2008 27 / 47

HPC-Linux

BT-MZ: Case B

Proc Core P Comp Sync
% %

P1 1 3 52.33 47.49
P2 2 3 99.64 0.14
P3 2 6 28.87 71.07
P4 1 6 46.26 53.65

Test Imb Exec.
% Time

A 82.23 81.64s
B 70.93 127.91s

R.Gioiosa (BSC) LKH08 - 21st May 2008 28 / 47

HPC-Linux

BT-MZ: Case C

Proc Core P Comp Sync
% %

P1 1 4 65.32 34.48
P2 2 4 99.68 0.12
P3 2 6 53.78 46.11
P4 1 6 85.88 14.44

Test Imb Exec.
% Time

A 82.23 81.64s
B 70.93 127.91s
C 45.99 75.62s

R.Gioiosa (BSC) LKH08 - 21st May 2008 29 / 47

HPC-Linux

BT-MZ: Case D

Proc Core P Comp Sync
% %

P1 1 4 82.73 17.10
P2 2 4 73.68 26.17
P3 2 5 66.40 33.47
P4 1 6 99.72 0.09

Test Imb Exec.
% Time

A 82.23 81.64s
B 70.93 127.91s
C 45.99 75.62s
D 33.38 66.88s

R.Gioiosa (BSC) LKH08 - 21st May 2008 30 / 47

HPC-Linux

SIESTA: Case A

Proc Core P Comp Sync
% %

P1 1 4 75.94 15.42
P2 1 4 75.24 18.11
P3 2 4 82.08 10.71
P4 2 4 93.47 3.18

Test Imb Exec.
% Time

A 14.43 858.57s

R.Gioiosa (BSC) LKH08 - 21st May 2008 31 / 47

HPC-Linux

SIESTA: Case B

Proc Core P Comp Sync
% %

P1 2 4 79.57 14.67
P2 1 4 87.06 10.15
P3 1 5 72.04 12.69
P4 2 5 77.73 8.68

Test Imb Exec.
% Time

A 14.43 858.57s
B 5.99 847.91s

R.Gioiosa (BSC) LKH08 - 21st May 2008 32 / 47

HPC-Linux

SIESTA: Case C

Proc Core P Comp Sync
% %

P1 2 4 83.04 10.59
P2 1 4 79.66 10.52
P3 1 4 80.78 9.41
P4 2 5 78.74 9.13

Test Imb Exec.
% Time

A 14.43 858.57s
B 5.99 847.91s
C 1.46 789.20s

R.Gioiosa (BSC) LKH08 - 21st May 2008 33 / 47

HPC-Linux

SIESTA: Case D

Proc Core P Comp Sync
% %

P1 2 4 90.76 5.60
P2 1 4 65.74 22.25
P3 1 4 68.08 19.36
P4 2 6 63.95 18.10

Test Imb Exec.
% Time

A 14.43 858.57s
B 5.99 847.91s
C 1.46 789.20s
D 16.64 976.35s

R.Gioiosa (BSC) LKH08 - 21st May 2008 34 / 47

HPC-Linux

Outline

1 Supercomputing
Parallel Computing
How many Chickens? The Top500 list
Problems with Parallel Computing

2 Load Imbalance
Balancing HPC applications through resource allocation
The IBM POWER5 processor
Experiments

3 HPCSched
The new Linux Scheduler
HPCSched design
Preliminary tests

4 Conclusion

R.Gioiosa (BSC) LKH08 - 21st May 2008 35 / 47

HPC-Linux

The new Linux Scheduler Framework

Linux 2.6.23 introduces new scheduling features:

A new scheduler for normal processes (the Complete Fair
Scheduler)
A new Scheduler Framework based on the concept of a Core
Scheduler and one Scheduling Class for each process class (RT,
normal, idle).

Each Scheduling Class implements a different scheduler algorithm and
handles some scheduling policy

R.Gioiosa (BSC) LKH08 - 21st May 2008 36 / 47

HPC-Linux

Scheduling classes

Scheduling Classes are linked together in a simple list:
Every processor has its own list
Every class contains a list of runnable processes assigned to a
CPU
The order of the list is important because it implicitly prioritize the
Scheduling Classes

R.Gioiosa (BSC) LKH08 - 21st May 2008 37 / 47

HPC-Linux

The Scheduler Core

The scheduler core:
1 Starts from the highest priority class (real time class)
2 Search for a runnable process in that class

This step depends on the scheduler algorithm of the specific class,
thus the Scheduler Core calls the next_task() method of the
scheduling class.
The next_task() returns the task descriptor of the next task to
run or NULL if there are no runnable tasks in the class

3 If there are no runnable task in the class, the Scheduler Core
moves to the next class

4 The Scheduler Core repeats these steps until it finds a runnable
task to assign the CPU to.

Notice that the Scheduler Core cannot fail in its research, for the idle
class has always one runnable process: the idle process

R.Gioiosa (BSC) LKH08 - 21st May 2008 38 / 47

HPC-Linux

HPCSched

We introduced in the Linux scheduler framework a new Scheduling
Class called HPC class

It is supposed to handle HPC applications with a scheduler
specifically tailored for improving HPC metrics (performance,
power, etc.)
At this stage, the HPC runs properly an HPC application and tries
to load balance (when it is necessary) the application using the
POWER5 features
In the current schema, HPC applications have higher priority than
normal processes

R.Gioiosa (BSC) LKH08 - 21st May 2008 39 / 47

HPC-Linux

HPCSched components

There are 3 independent components in the HPC scheduler

1 Policy: the scheduler algorithm itself that selects the next task to
be executed

2 Metrics and Heuristics: a formula that translates the information
provided by the metrics to increment/decrement of the task priority

3 Applying mechanism: the functions required to read/set the
POWER5 thread priority (architecture dependent). This
components comes from the previous HMT patch

Every component is almost independent from the others and mainly
architecture independent (only the functions required to read/set the
thread priority are architecture-dependent).

R.Gioiosa (BSC) LKH08 - 21st May 2008 40 / 47

HPC-Linux

HPCSched scheduling policy

The scheduler policy is the algorithm used by the HPC scheduler to
select the next task to run from the run-queue list
We introduced a new scheduler policy (SCHED_PC)

1 This policy represents HPC class applications
2 The new policy can be set by means of a
sched_setscheduler() system call

We assume the following hypothesis:

1 There is usually one HPC process per CPU (safely, few
processes)

2 An HPC process either computes or wait for an message from its
neighbours

R.Gioiosa (BSC) LKH08 - 21st May 2008 41 / 47

HPC-Linux

HPCSched balancing heuristics

For each MPI iteration, we compute the running and waiting time.
These information are used by the balancing heuristic. We tried two
heuristics:

Uniform This heuristic uses the global utilization ratio of a task in a
HPC application

Adaptive This heuristic uses the “recent history” of a task

R.Gioiosa (BSC) LKH08 - 21st May 2008 42 / 47

HPC-Linux

Preliminary tests: MetBench

Both the Uniform and Adaptive heuristics work more or less well with
MetBench:

Imbalance reduced from 74.37% to 32.95%
Execution time reduced from 86.05s to 75.47s (about 12% of
improvement)
The Uniform heuristic quickly finds the stable state and remains
there
The adaptive heuristic oscillates between two different priorities

R.Gioiosa (BSC) LKH08 - 21st May 2008 43 / 47

HPC-Linux

Preliminary tests: SIESTA

Neither the Uniform nor the
Adaptive heuristic is able to
significantly reduce the imbalance.

Yet there is a big performance
improvement:

Uniform: 20.6%
Adaptive: 44.67%

R.Gioiosa (BSC) LKH08 - 21st May 2008 44 / 47

HPC-Linux

Outline

1 Supercomputing
Parallel Computing
How many Chickens? The Top500 list
Problems with Parallel Computing

2 Load Imbalance
Balancing HPC applications through resource allocation
The IBM POWER5 processor
Experiments

3 HPCSched
The new Linux Scheduler
HPCSched design
Preliminary tests

4 Conclusion

R.Gioiosa (BSC) LKH08 - 21st May 2008 45 / 47

HPC-Linux

Conclusion

Supercomputers are becoming “common” in many academic and
industrial institutions

Linux is the main OS used for Supercomputing even if it is not
designed for HPC

Some applications are imbalanced behavior (because of internal
or external reasons). This kind of problem is usually “solved” by
hand

Linux offers a great opportunity to customize the OS for HPC and
take full advantage of the underneath hardware

In this study we showed how allowing software to control the
amount of shared resources assigned to each task may improve
the performance of HPC applications.

R.Gioiosa (BSC) LKH08 - 21st May 2008 46 / 47

HPC-Linux

Questions?
roberto.gioiosa@bsc.es, gioiosa@sprg.uniroma2.it

http://www.sprg.uniroma2.it/home/gioiosa/

R.Gioiosa (BSC) LKH08 - 21st May 2008 47 / 47

	Supercomputing
	Parallel Computing
	How many Chickens? The Top500 list
	Problems with Parallel Computing

	Load Imbalance
	Balancing HPC applications through resource allocation
	The IBM POWER5 processor
	Experiments

	HPCSched
	The new Linux Scheduler
	HPCSched design
	Preliminary tests

	Conclusion

